A Line-based Spectral Clustering Method for Efficient Planar Structure Extraction from Lidar Data
نویسندگان
چکیده
Planar structures are essential components of the urban landscape and automated extraction planar structure from LiDAR data is a fundamental step in solving complex mapping tasks such as building recognition and urban modelling. This paper presents a new and effective method for planar structure extraction from airborne LiDAR data based on spectral clustering of straight line segments. The straight line segments are derived from LiDAR scan lines using an Iterative-End-Point-Fit simplification algorithm. Adjacency matrix is then formed based on pair-wise similarity of the extracted line segments, and a symmetric affine matrix is derived which is then decomposed into eigenspace. The planar structures are then detected by mean-shift clustering algorithm in eigenspace. The use of straight line segments facilitates the processing and significantly reduces the computational load. Spectral analysis of straight line segments in eigenspace makes the planar structures more prominent, resulting in a robust extraction of planar surfaces. Experiments are performed on the ISPRS benchmark LiDAR data over three test sites containing a variety of buildings with complex roof structures and varying sizes. The experimental results, which are quantitatively evaluated independently by the ISPRS benchmark test group, are presented. The results show that the proposed method achieves on average 80% of completeness with over 98% of correctness. Better performance is observed over larger size of buildings (>10m2) with over 92% of completeness and nearly 100% of correctness in all test areas, indicating the robustness and high reliability of the proposed algorithm.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملExtraction of Urban Power Lines from Vehicle-Borne LiDAR Data
Airborne LiDAR has been traditionally used for power line cruising. Nevertheless, data acquisition with airborne LiDAR is constrained by the complex environments in urban areas as well as the multiple parallel line structures on the same power line tower, which means it is not directly applicable to the extraction of urban power lines. Vehicle-borne LiDAR system has its advantages upon airborne...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملHeuristical Feature Extraction from Lidar Data and Their Visualization
Extraction of landscape features from LiDAR data has been studied widely in the past few years. These feature extraction methodologies have been focussed on certain types of features only, namely the bare earth model, buildings principally containing planar roofs, trees and roads. In this paper, we present a methodology to process LiDAR data through DBSCAN, a density based clustering method, wh...
متن کاملClustering Based Planar Roof Extraction from Lidar Data
An approach to generate 3-D models of buildings from lidar data collected from an urban setting is presented. The present research focuses on extracting roof structures from a point cloud of a building using a combination of datamining techniques. To extract the roof structure, an assumption of planarity has been made, i.e. it is assumed that the roof can be modeled by a set of planar segments....
متن کامل